News Posts matching #Zen 5c

Return to Keyword Browsing

AMD "Zen 5c" CCDs Made On More Advanced 3 nm Node Than "Zen 5"

AMD is reportedly building its upcoming "Zen 5" and "Zen 5c" CPU Core Dies (CCDs) on two different foundry nodes, a report by Chinese publication UDN, claims. The Zen 5 CCD powering the upcoming Ryzen "Granite Ridge" desktop processors, "Fire Range" mobile processors, and EPYC "Turin" server processors, will be reportedly built on the 4 nm EUV foundry node, a slightly more advanced node than the current 5 nm EUV the company is building "Zen 4" CCDs on. The "Zen 5c" CCD, or the chiplet with purely "Zen 5c" cores in a high density configuration; on the other hand, will be built on an even more advanced 3 nm EUV foundry node, the report says. Both CCDs will go into mass production in Q2-2024, with product launches expected across the second half of the year.

The "Zen 5c" chiplet has a mammoth 32 cores spread across two CCXs of 16 cores, each. Each CCX has 16 cores sharing a 32 MB L3 cache. It is to cram these 32 cores, each with 1 MB of L2 cache; and a total of 64 MB of L3 cache, that AMD could be turning to the 3 nm foundry node. Another reason could be voltages. If "Zen 4c" is anything to go by, the "Zen 5c" core is a highly compacted variant of "Zen 5," which operates at a lower voltage band than its larger sibling, without any change in IPC or instruction sets. The decision to go with 3 nm could be a move aimed at increasing clock speeds at those lower voltages, in a bid to generationally improve performance using clock speeds, besides IPC and core count. The EPYC processor with "Zen 5c" chiplets will feature no more than six such large CCDs, for a maximum core count of 192. The regular "Zen 5" CCD has just 8 cores in a single CCX, with 32 MB of L3 cache shared among the cores; and TSV provision for 3D Vertical Cache, to increase the L3 cache in special variants.

AMD "Kraken Point" Silicon Succeeds "Hawk Point" with Zen 5 4P+4C Core Config, NPU

AMD's next generation Ryzen mobile processor family is undergoing a significant re-positioning of IP within its product stack, as the company introduces the new "elite experience" segment. The "Fire Range" mobile processor is a direct successor to "Dragon Range" MCM, with two 8-core "Zen 5" chiplets. It is essentially a BGA package of the desktop "Granite Ridge" processor, and comes with up to 16 "Zen 5" cores, for flagship gaming notebooks and mobile workstations. A segment below the current "Dragon Range" is the current "Hawk Point" silicon, driving premium experiences. There is a rather large CPU performance gap between the two, as would be the case between the upcoming "Fire Range" and "Kraken Point," which is why AMD is creating the "elite experience" segment, and filling it with "Strix Halo" and "Strix Point," which will square off against Core Ultra 7 and Core Ultra 9 processors, as well as certain HX-segment 14th Gen Core mobile processors. "Strix Point" has a significant core-count increase to 12, along with a large iGPU. We've extensively covered "Strix Point" in our older article, but now we have more information on the elusive "Kraken Point."

"Kraken Point" is codename for AMD's next-generation monolithic mobile processor silicon being designed to power Ryzen processor SKUs competing against the bulk of Intel Core Ultra 5 and Core Ultra 7 SKUs. This chip will be built on a refined 4 nm EUV node by TSMC, and will be monolithic. Its most interesting aspect is the CPU complex. It reportedly features a combination of four regular "Zen 5" cores, and four "Zen 5c" low power cores. All eight cores will likely share a single CCX, which means they share a common L3 cache, which enables easy movement of threads between the two kinds of cores, without having to make round-trips to the DRAM.

Tipster Claims AMD "Kraken Point" APU Configured with Zen 5 & Zen 5c Cores

Everest (@Olrak29_) has kept track of many AMD processor families over the past couple of years—his latest insight provides an early look at the alleged internal makeup of Team Red's "Kraken Point" APU series. The rumor mill has designated these next-gen mobile processors as 2025 follow-ups to the recently launched Ryzen 8040 "Hawk Point" family of mainstream laptop APUs. The tipster's initial social media post only mentioned the presence of both Zen 5 and Zen 5c cores within Kraken Point processors, but he later clarified that a total of eight cores would include four large units and four smaller types. TPU's past coverage of Kraken Point pointed to rumors of an 8-core, 16-thread configuration, but leaked slides (from late 2023) did not mention the integration of efficiency-tuned Zen 5c "Prometheus" cores, along with presumed Zen 5 "Nirvana" cores.

Everest's continuous flow of insider information reveals that "Kraken Point" shares many "Hawk Point" traits—four workgroup processors (WGP) could be present on final retail products, granting eight compute units (8 CUs in total). He responded to a query regarding AMD's choice of integrated graphics technology—the succinct answer being RDNA 3.5. Past leaks allege that XDNA 2 will drive the NPU side of things—offering a performance range of around 45 to 50 TOPS. The Kraken Point APU is believed to be sticking with a safe monolithic die design, manufactured on a non-specific 4 nm process. Team Red is rumored to be in TSMC's order books for all sorts of next generation silicon.

AMD Zen 5 Linux Kernel Patches Point to Power Management Updates

AMD released its latest PMC (power management controller) driver patches for the Linux kernel, which reference a yet unreleased "Family 1Ah" processors. Phoronix believes this is the first reference to AMD's next generation "Zen 5" microarchitecture in the PMC driver. We've already seen AMD EPYC "Turin" server processors based on "Zen 5" in the flesh, and it's likely that AMD is handing these out to some of its biggest data-center customers for testing and evaluation, before giving them some final touches and green-lighting mass-production in 2024. The patches themselves are barely two new lines of code, and talk about a new sleep state called "s2idle." This is a software-defined system sleep state. The EPYC "Turin" processor comes in two packages, one with up to 128 "Zen 5" cores, and another with up to 192 "Zen 5c" cores for cloud applications.

AMD 5th Gen EPYC "Turin" Pictured: Who Needs Accelerators When You Have 192 Cores?

AMD's upcoming server processor, the 5th Gen EPYC "Turin," has been pictured as an engineering sample is probably being evaluated by the company's data-center or cloud customers. The processor has a mammoth core-count of 192-core/384-thread in its high-density cloud-focused variant that uses "Zen 5c" CPU cores. Its regular version that uses larger "Zen 5" cores that can sustain higher clock speeds, also comes with a fairly high core-count of 128-core/256-thread, up from the 96-core/192-thread of the "Zen 4" based EPYC "Genoa."

The EPYC "Turin" server processor based on "Zen 5" comes with an updated sIOD (server I/O die), surrounded by as many as 16 CCDs (CPU complex dies). AMD is expected to build these CCDs on the TSMC N4P foundry node, which is a more advanced version of the TSMC N4 node the company currently uses for its "Phoenix" client processors, and the TSMC N5 node it uses for its "Zen 4" CCD. TSMC claims that the N4P node offers an up to 22% improvement in power efficiency over N5, as well as a 6% increase in transistor density. Each of the "Zen 5" CCDs is confirmed to have 8 CPU cores sharing 32 MB L3 cache memory. A total of 16 such CCDs add up to the processor's 128-core/256-thread number. The high-density "Turin" meant for cloud data-centers, is a whole different beast.

AMD Mobile Processor Lineup in 2025 Sees "Fire Range," "Strix Halo," and Signficant AI Performance Increases

With Windows 11 23H2 setting the stage for increased prevalence of AI in client PC use cases, the new hardware battleground between AMD and its rivals Intel, Apple, and Qualcomm, will be in equipping their mobile processors with sufficient AI acceleration performance. AMD already introduced accelerated AI with the current "Phoenix" processor that debuts Ryzen AI, and its Xilinx XDNA hardware backend that provides a performance of up to 16 TOPS. This will see a 2-3 fold increase with the company's 2024-25 mobile processor lineup, according to a roadmap leak by "Moore's Law is Dead."

At the very top of the pile, in a product segment called "ultimate compute," which consists of large gaming notebooks, mobile workstations, and desktop-replacements; the company's current Ryzen 7045 "Dragon Range" processor will continue throughout 2024. Essentially a non-socketed version of the desktop "Raphael" MCM, "Dragon Range" features up to two 5 nm "Zen 4" CCDs for up to 16 cores, and a 6 nm cIOD. This processor lacks any form of AI acceleration. In 2025, the processor will be succeeded with "Fire Range," a similar non-socketed, mobile-friendly MCM that's derived from "Granite Ridge," with up to two 4 nm "Zen 5" CCDs for up to 16 cores; and the 6 nm cIOD. What's interesting to note here, is that the quasi-roadmap makes no mention of AI acceleration for "Fire Range," which means "Granite Ridge" could miss out on Ryzen AI acceleration from the processor. Modern discrete GPUs from both NVIDIA and AMD support AI accelerators, so this must have been AMD's consideration to exclude an XDNA-based Ryzen AI accelerator on "Fire Range" and "Granite Ridge."

More AMD "Strix Point" Mobile Processor Details Emerge

"Strix Point" is the codename for AMD's next-generation mobile processor succeeding the current Ryzen 7040 series "Phoenix." More details of the processor emerged thanks to "All The Watts!!" on Twitter. The CPU of "Strix Point" will be heterogenous, in that it will feature two different kinds of CPU cores, but with essentially the same ISA and IPC. It is rumored that the processor will feature 4 "Zen 5" CPU cores, and 8 "Zen 5c" cores.

Both core types feature an identical IPC, but the "Zen 5" cores can hold onto higher boost frequencies, and have a wider frequency band, than the "Zen 5c" cores. From what we can deduce from the current "Zen 4c" cores, "Zen 5c" cores aren't strictly "efficiency" cores, as they still offer the full breadth of core ISA as "Zen 5," including SMT. In its maximum configuration, "Strix Point" will hence be a 12-core/24-thread processor. The two CPU core types sit in two different CCX (CPU core complexes), the "Zen 5" CCX has 4 cores sharing a 16 MB L3 cache, while the "Zen 5c" CCX shares a 16 MB L3 cache among 8 cores. AMD will probably use a software-based solution to ensure the right kind of workload from the OS is processed by the right kind of CPU core.

AMD Zen 5 Microarchitecture Referenced in Leaked Slides

A couple of slides from AMD's internal presentation were leaked to the web by Moore's Law is Dead, referencing what's allegedly the next-generation "Zen 5" microarchitecture. Internally, the performance variant of the "Zen 5" core is referred to as "Nirvana," and the CCD chiplet (CPU core die) based on "Nirvana" cores, is codenamed "Eldora." These CCDs will make up either the company's Ryzen "Granite Ridge" desktop processors, or EPYC "Turin" server processors. The cores themselves could also be part of the company's next-generation mobile processors, as part of heterogenous CCXs (CPU core complex), next to "Zen 5c" low-power cores.

In broad strokes, AMD describes "Zen 5" as introducing a 10% to 15% IPC increase over the current "Zen 4." The core will feature a larger 48 KB L1D cache, compared to the current 32 KB. As for the core itself, it features an 8-wide dispatch from the micro-op queue, compared to the 6-wide dispatch of "Zen 4." The integer execution stage gets 6 ALUs, compared to the current 4. The floating point unit gets FP-512 capabilities. Perhaps the biggest announcement is that AMD has increased the maximum cores per CCX from 8 to 16. At this point we don't know if it means that "Eldora" CCD will have 16 cores, or whether it means that the cloud-specific CCD with 16 "Zen 5c" cores will have 16 cores within a single CCX, rather than spread across two CCXs with smaller L3 caches. AMD is leveraging the TSMC 4 nm EUV node for "Eldora," the mobile processor based on "Zen 5" could be based on the more advanced TSMC 3 nm EUV node.

AMD "Strix Point" Company's First Hybrid Processor, 4P+8E ES Surfaces

Beating previous reports that AMD is increasing the CPU core count of its mobile monolithic processors from the present 8-core/16-thread to 12-core/24-thread; we are learning that the next-gen processor from the company, codenamed "Strix Point," will in fact be the company's first hybrid processor. The chip is expected to feature two kinds of CPU cores, with "Zen 5" being the microarchitecture behind the performance cores, and "Zen 5c" behind the efficiency cores. An engineering sample featuring 4 P-cores, and 8 E-cores, surfaced on the web, thanks to Performancedatabases. A HWiNFO screenshot reveals the engineering sample's core-configuration of 4x P-cores and 8x E-cores, with identical L1 cache sizes. Things get a little fuzzy with the L2 cache size detection, and L3 cache.

We know from the current "Zen 4c" core design that it is essentially a compacted version of "Zen 4" designed for higher-density chiplets that have 16 cores; and that it has both the same ISA and IPC as "Zen 4," with the only difference being that "Zen 4c" is designed with lower amounts of shared L3 caches at their disposal, are generally configured with lower clock speeds, and have higher energy efficiency than "Zen 4." "Zen 4c" cores also 35% smaller in die-area than "Zen 4." The company could develop "Zen 5c" CPU cores with similar design goals.
Return to Keyword Browsing
May 19th, 2024 05:16 EDT change timezone

New Forum Posts

Popular Reviews

Controversial News Posts